SARCOPENIA AND PROTEIN

Professor (Dr.) Jagmeet Madan Principal, Director, SVT Research, Consultancy and Collaboration Centre (SVTRCC) Sir Vithaldas Thackersey College of Home Science (Autonomous), SNDT Women's University, Mumbai. dr.jagmeetmadan@gmail.com www.drjagmeetmadan.com www.svt.edu.in

JM 2022

Let Food be Thy Medicine B Medicine be Thy Food - Hippocrates

Eating Smart

Eating healthy does not mean eating less

Healthy eating does not involve following latest diet trends

Nutritional requirements vary across all age groups

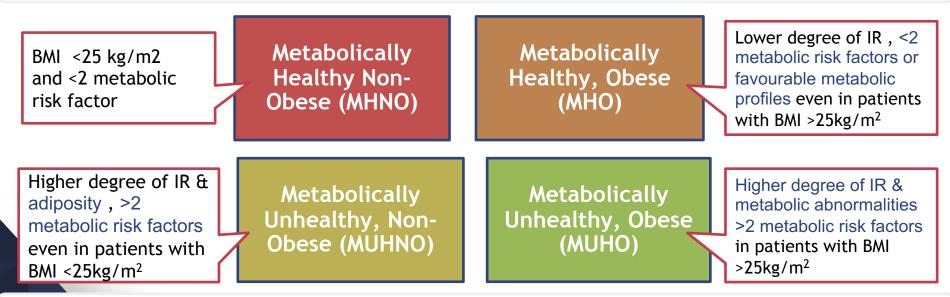
Nutritional intake & dietary patterns are directly linked with metabolic abnormalities

Inappropriate eating practices leads to Malnutrition: Undernutrition and Overnutrition Malnutrition Undernutrition & Overnutrition Predisposition Inflammatory to infection environment Comorbid Compromised Condition Immunity

Hidden Contributors to the Inflammatory state

- Malnutrition & Micronutrient
 deficiencies Imbalance in Diets
- Inadequate & Irregular sleep patterns
- Sedentary lifestyle
- Comorbid chronic health conditions
- Chronic Stress underlying depression
- Environmental Pollution

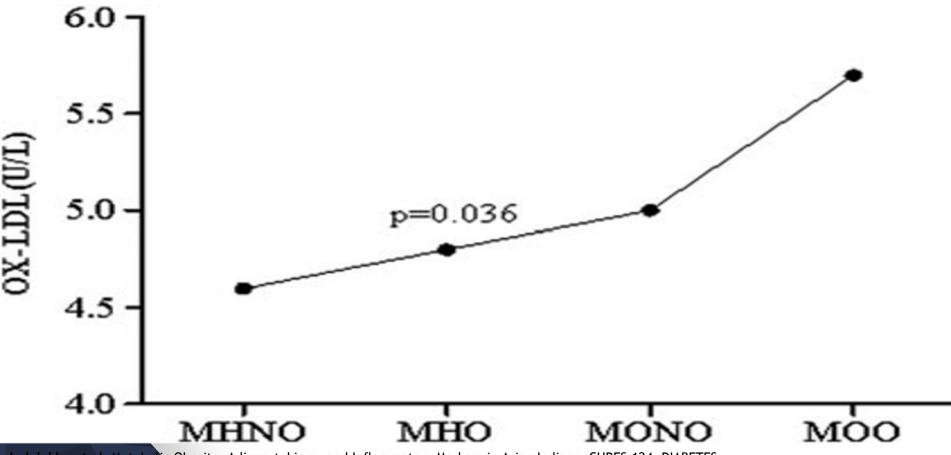
Philip C.Calder et al (2020); Optimal Nutritional Status for a Well-Functioning Immune System is an Important Factor to Protect Against Viral Infections: Preprints


Why is Metabolic Health Important?

www.drjagmeetmadan.com

JM 2022

Metabolic Phenotypes


Although many different definitions are used for metabolic health, insulin resistance is regarded as the core pathophysiology

The phenotypes are usually identified using surrogate markers of insulin resistance, the number of metabolic syndrome components, the amount of visceral fat, or the composition of cardiovascular risk factors.

Lee Et Al. Changes In Metabolic Health Status Over Time And Risk Of Developing Type 2 Diabetes. Medicine.2015, Metabolic Health And Weight: Understanding Metabolically Unhealthy Normal Weight Or Metabolically Healthy Obese Patients. M E T A B O L I S M C L I N I C A L A N D E X P E R I M E N T A L 6 5 (2 0 1 6) 7 3 - 8 0. Indulekha Et Al. Metabolic Obesity, Adipocytokines, And Inflammatory Markers In Asian Indians-cures-124

Inflammatory Markers & Metabolic Health

Indulekha et al. Metabolic Obesity, Adipocytokines, and Inflammatory Markers in Asian Indians–CURES-124. DIABETES TECHNOLOGY & THERAPEUTICS Volume 17, Number 2, 2015.

WHAT IS SARCOPENIA

"*A syndrome characterized by a progressive and general loss* of skeletal *muscle mass and strength* with an increased risk of adverse disability, frailty and poor quality of life"

WHAT IS SARCOPENIC OBESITY

"Sarcopenic obesity is a new class of obesity in older adults in which **low skeletal muscle mass** is coupled with high levels of adiposity". It is unfortunate - now we see it in Young Adults of India Ref: EWGSOP2, 2019, Janice L. Atkins et al, 2019

TYPES OF SARCOPENIA

PRIMARY SARCOPENIA

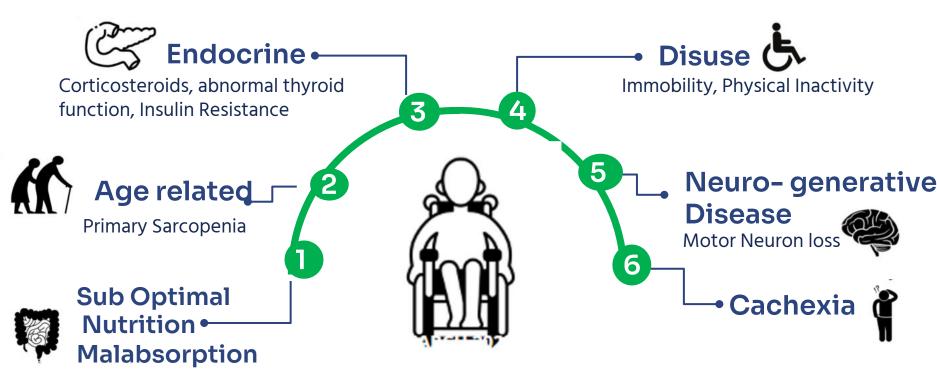
- Found in geriatrics
- Loss of muscle mass and/or function and strength
- Multifactorial pathogenesis.

SECONDARY SARCOPENIA

- Patients in any age group, including younger patients
- Muscle wasting, loss of strength, and/or function
- Specific underlying cause.

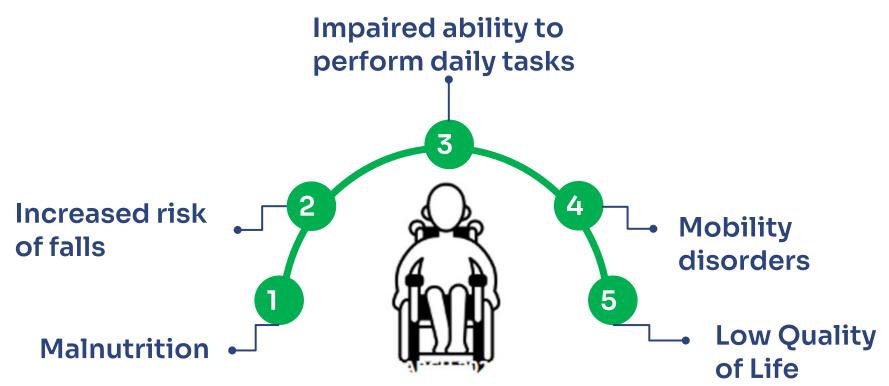
Ref: SWAG-SARCO-2022

PREVALENCE


SARCOPENIA (>80 y) 15.2%

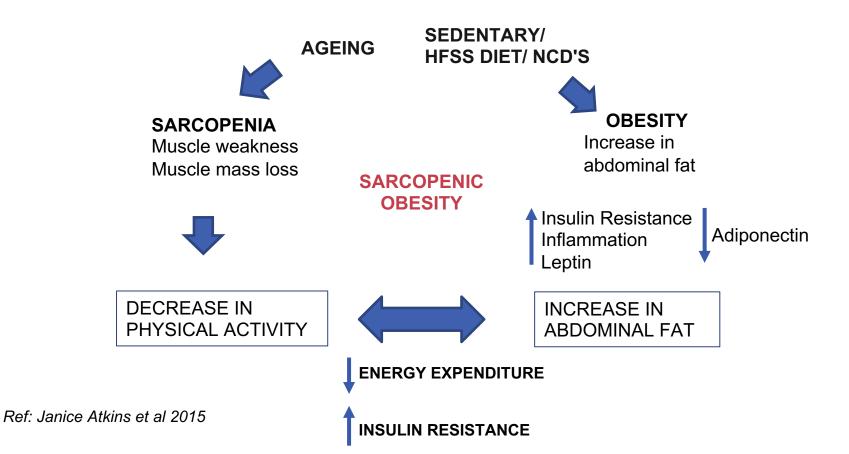
SARCOPENIC OBESITY (>80 y) **10-15%** **SARCOPENIA** ≥ 65 y 50% 44% 17.5% (>80 y) SARCOPENIC 5.4% - 6.3% **OBESITY**

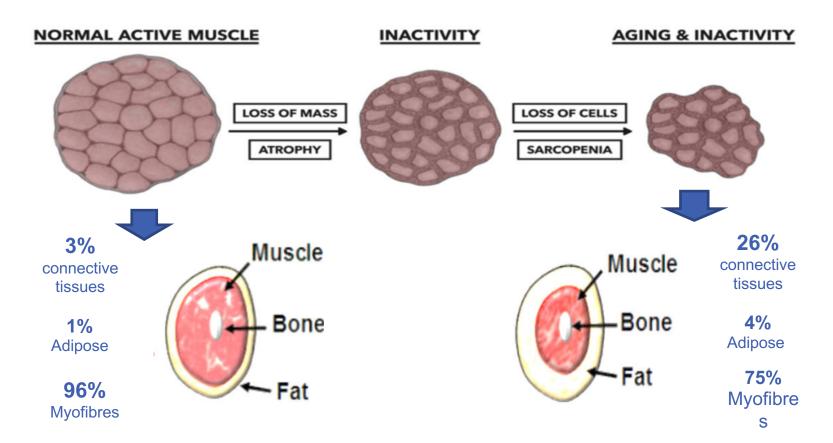
≥ 65 y


Ref: 1. SWAG-SARCO-2022, 2. Ramesh Pal, SO-CUBES, 2021

ETIOLOGY OF SARCOPENIA

Ref: Roberto Cannataro et al, 2021


COMPLICATIONS DUE TO SARCOPENIA


Sarcopenia associated complications can lead to increased risk of mortality

Ref: Janice Atkins et al 2015

PROGRESSION OF SARCOPENIC OBESITY

PROGRESSION OF SARCOPENIC OBESITY

NUTRITIONAL INTERVENTION

Hypo- Caloric Diet: 20-25kcal/kg/day

High Protein :1.2-1.8 g/kg IBW /

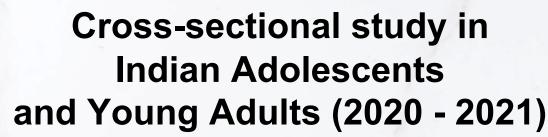
Good Quality Proteins (9 essential Amino Acids)

Leucine rich foods (5-6g /Meal)

Protein sourced from Cereals : Legumes: Milk (3:1:2.5)

Fibre : 35-40g/day

Good Quality Fats; Rich in MUFA & PUFA , Nuts (15-20% En


Increased consumption of Millets

refrain from taking pictures

Prevalence of Hyperinsulinemia and Insulin Resistance: A Cross– Sectional Study of Adolescents and Young Adults in Mumbai, India

To explore snacking patterns and its association with body composition in adolescents and young adults, aged 16–25 years in Mumbai, India.

Jagmeet Madan¹, Sharvari Desai², Panchali Moitra¹, Sheryl Salis¹, Rekha Battalwar¹, Soumik Kalita¹, Ajay Phatak², Shobha Udipi², Rama Vaidya², Ashok Vaidya²

¹Sir Vithaldas Thackersey College of Home Science (Autonomous), SNDT Women's University, Mumbai ²Kasturba Health Society's Medical Research Centre, Mumbai, India

Madan et al, 2021 Unpublished Data

METHOD

Design: Cross sectional study Setting: Educational institutes (n=11), Mumbai, India. Participants: Adolescents and young adults, age 16-25 years (n= 1313)

Variables

A) Anthropometry (weight, height, body fat %, visceral fat, BMI, WC, HC, WHR, W:Ht)

B) Physical examination- Blood pressure (systolic and diastolic blood pressure)

C) Biochemical Parameters : Fasting glucose and insulin, 2-h glucose and 2h stimulated insulin, HbA1C, CBC

 D) Diet and nutrient intakes - Snacking Pattern- Validated snacking questionnaire Ethical Considerations:
 ISBEC ver 2, August, 2017. Informed written consent from participants and parents of participants < 18 years were obtained.

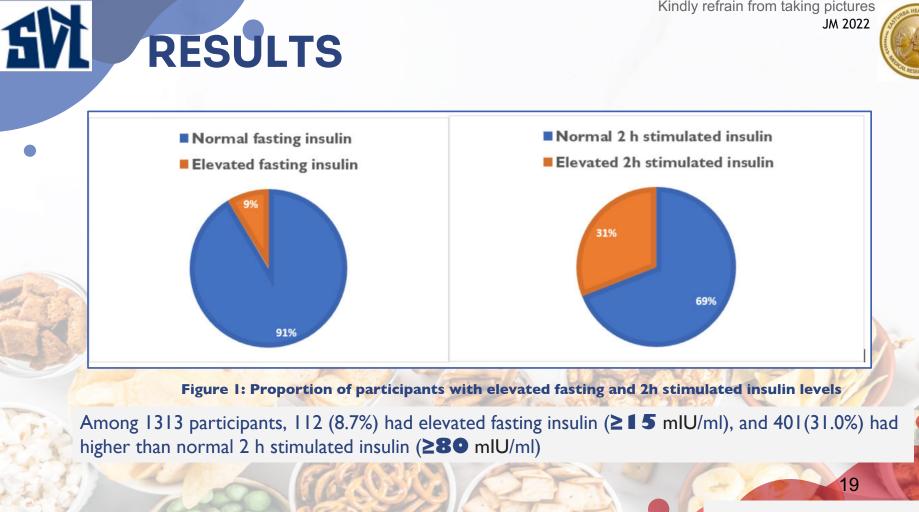
RESULTS

204 (15.6)

Kindly refrain from taking pictures JM 2022

	Characteristics	n (%)
	Gender	
	Males	457 (34.9)
	Females	853 (65.1)
	Age Categories	
	16-19 years	724 (55.3)
	20-22 years	492 (37.5)
	23-25 years	94 (7.2)
	Family history of diabetes	
	First degree family member (parents/siblings)	287 (21.9)
	Second degree family member (grandparents/	
	uncle/aunts)	554 (42.3)
	Either first/ second degree family members	
6		617 (47.1)
10	Medical history	
	Known history of elevated blood pressure	19 (1.5)
	Hormonal disorders (PCOS/ thyroid disorders)	58 (4.4)
	Activity pattern	
	Engages in physical activity > 2.5h/wk	685 (52.3)
-	Body weight status (n=1310)	
	Underweight	310 (23.7)
~	Normal weight	535 (40.8)
	Overweight	197 (15.0)
	Obese	268 (20.5)
Į.	Central adiposity measures (n=1310)	,

Table 1:


Demographic and body weight status of adolescents and young adults (n=1313) in the study

- The mean age of the participants was 19.4
 (1.8) years
- Among 1313 participants, 65.1% were females, 55.3% belonged to the age category,16-19 years and 47.1% had either first/second degree relatives with diabetes.
- □ The **prevalence of overweight and obesity** were 15.0% and 20.5% respectively.

Madan et al, 2021 Unpublished Data

www.driagmeetmadan.com

Waist to height ratio > 0.5

www.drjagmeetmadan.com

Madan et al, 2021 Unpublished Data

Kindly refrain from taking pictures JM 2022

 Table 5: Comparison of mean anthropometric indices, glycosylated hemoglobin values and blood

 pressure between participants with and without hyperinsulinemia and hyperglycemia

		\frown					5) 0.002* 9) <0.001**	
	/	Category I N=841	Category 2 N=395	Category 3 N=16	/	Category 4 N=37	p-value	
Weight (kg)	[55.52(12.32)	57.93(14.33)	52.23(12.97)	[62.54(9.55)	0.002*	
BMI (kg/m ²⁾		21.41(4.39)	23.00(4.77)	19.97(3.93)		25.43(4.59)	<0.001**	
Waist Circumference (cm)		70.17(9.71)	73.65(11.06)	66.39(7.77)		76.64 (8.51)	<0.001**	
Hip circumference (cm)		89.93(9.52)	93.11(10.30)	85.94(8.50)		96.82(8.31)	<0.001**	
WHtR		0.44(0.05)	0.46(0.06)	0.41(0.04)		0.48(0.06)	<0.001**	
Body fat (%)		24.20(8.84)	29.41(7.79)	23.13(7.40)		32.36(9.30)	<0.001**	
Visceral Fat		3.82(3.06)	4.65(3.25)	3.15(2.77)		5.94(2.60)	<0.001**	
HbAlc		5.40(0.30)	5.39(0.31)	5.37(0.24)		5.5(0.32)	0.520	
Diastolic blood pressu	ıre	66.43(8.09)	66.86(8.02)	66.87(8.01)		71.59(9.12)	0.002*	
(mmHg)								
Systolic blood pressur	e	104.84(11.25)	104.89(11.69)	106.43((11.96)		.37(.09)	0.007*	
(mmHg)								

WHtR, Waist to Height Ratio. HbA1C, Glycosylated Hemoglobin. *p < 0.05, **p < 0.001

Category 1: normoglycemic and normo insulinemia; Category 2: hyperinsulinemia but normoglycemia Category 3: hyperglycemia but normo insulinemia; Category 4: hyperinsulinemia and hyperglycemia

Madan et al, 2021 Unpublished Data

Effect of Almond Consumption on Glucose Metabolism, Hyperinsulinemia and Selected Markers of Inflammation: A Randomized Controlled Trial in Adolescents and Young Adults in Mumbai, India

Jagmeet Madan¹, Panchali Moitra¹, Sharvari Desai², Sheryl Salis¹, Rekha Battalwar¹, Soumik Kalita¹, Ajay Phatak², Shobha Udipi², Rama Vaidya², Ashok Vaidya²

¹Sir Vithaldas Thackersey College of Home Science (Autonomous), SNDT Women's University, Mumbai ²Kasturba Health Society's Medical Research Centre, Mumbai, India Front Nutr. 2021; 8: 668622. Published online 2021 Jun 24. doi: <u>10.3389/fnut.2021.668622</u> PMCID: PMC8264510 PMID: <u>34249987</u>

Effect of Almond Consumption on Metabolic Risk Factors—Glucose Metabolism, Hyperinsulinemia, Selected Markers of Inflammation: A Randomized Controlled Trial in Adolescents and Young Adults

Jagmeet Madan,¹ Sharvari Desai,¹ Panchali Moitra,¹ Sheryl Salis,² Shubhada Agashe,³ Rekha Battalwar,¹ Anushree Mehta,⁴ Rachana Kamble,⁴ Soumik Kalita,⁵,* Ajay Gajanan Phatak,⁶ Shobha A. Udipi,^{4,7}

Table 3 : Mean change in anthropometry measurements in AG and CG at end line

Anthropometric Measurements	Almonds Group(n=107) Mean (SD) (95%CI)	Control Group (n=112) Mean (SD) (95%CI)	p value
Weight (kg)	0.92 ±1.65 (0.60,1.24)	0.52 ±4.17 (-0.25,1.30)	0.35
BMI (kg/m²)	0.35 ±0.66 (0.22,0.47)	0.19 ±1.77 (-0.13,0.53)	0.40
Waist Hip Ratio	0.01 ±0.05 (0.00,0.02)	0.00 ± 0.0 (-0.00,0.10)	0.11
Waist to Ht Ratio	0.01 ±0.03 (0.00,0.01)	0.01 ±0.0000.000,0.01)	0.94
Percent Body Fat	0.87 ±2.12 (0.46,1.27)	3.26 ±18.07 (-0.12,6.64)	0.17
Visceral Fat	0.11 ±0.94 (-0.07,0.29)	0.12±1.08 (-0.08,0.34)	0.91

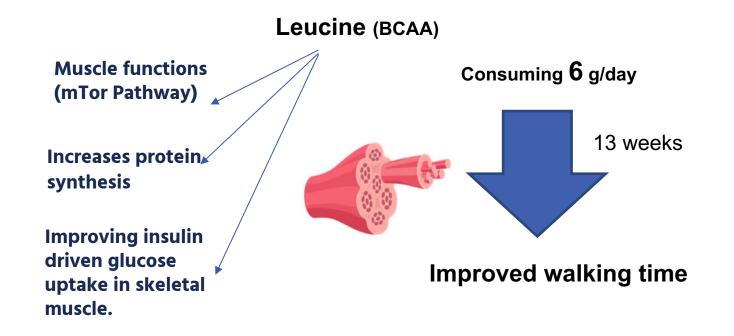


Table 4 : Mean change in lipid and inflammatory markers in subgroups of AG andCG that reported improvement in body fat percent at end line

Vari	ables	Almond Group (n=28)	Control Group (n=35)	p value
T	C	-11.80 ± 26.44	6.61±19.1	0.002
LD	L-c	-8.75±25.60	6.1±19.11	0.011
Hs-0	CRP	-1.41±7.20 (-35.0-8.96)	0.33±5.6 (-8.1-26.4)	0.283
Adipo	nectin	-0.13±1.24 (-2.56-2.31)	0.54±1.59 (-2.08-4.09)	0.074
Lep	ptin	1.16±4.57 (-5.89- 10.81)	-0.33±3.55 (-12.81-8.0)	0.148
IL	6	-79.50 ±277.70 (-835.6- 225.12)	5.15±66.27 (-316.3-133.8)	0.086
TNF-	alpha	-1.15±42.02 (-91.63- 110.310	-0.71±14.61 (-73.3-28.9)	0.955

LEUCINE IS ESSENTIAL FOR MUSCLE DEVELOPMENT

TABLE 1: LEUCINE CONTENT OF COMMON FOODS

Product name	Leucine content (g per 100g)	Product name
, dry	12.24	Soya bean, brown
	12	Pepper, black
ole, Cow	10.66	Banana, ripe, robusta
, ripe (Neelam)	9.19	Field beans, tender, lean
h	8.70	Onion, stalk
a	8.52	Amaranth leaves, green
d bean, white	8.48	

TAKE HOME MESSAGES

NO SINGLE FOOD is SUPER FOOD & NO SINGLE NUTRIENT is a MAGIC NUTRIENT

A BALANCE of MACRONUTRIENTS & MICRONUTRIENTS is

the key

- Dietary Diversity Score
- Nutrient Adequacy Score
- Dietary Phytochemical Index Score

Any Questions?

Any Queries, please write to www.drjagmeetmadan.com